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Motivation: RL Generalization

> Training Deep RL algorithms takes millions of

external view

timesteps per task

> We want to use one policy to solve multiple tasks
> We also want to be able to adapt to slight changes

in the environment

gripper camera

o Key special-case in robotics: sim2real
transfer [1]

o Different degrees of the same core problem
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Motivation: Multi-task RL and Generalization

> “Generalization” initially focused on applying one algorithm to multiple tasks independently

o E.g, 1 set of DQN hyperparameters, 57 Atari games [2] [3]
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Motivation: Multi-task RL and Generalization

> Supervised learning sometimes needs millions of images or text fragments
> How many different “levels”/tasks does RL need to generalize?

o We can find out by generating near-infinite variations of the same environment [5] [6]
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Motivation: Multi-task RL and Generalization

> Supervised learning sometimes needs millions of images or text fragments
> How many different “levels”/tasks does RL need to generalize?
o We can find out by generating near-infinite variations of the same environment

o Robotics examples: manipulation environments with random object locations [7]
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Motivation: Multi-task RL and Generalization

> Procedural generation for diverse task collections is a common theme [8]
o We've seen one example already with dexterous hand sim2real [9]

o Especially for visual generalization, where graphics are easily randomized [10] [11] [12]
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Motivation: Multi-task RL and Generalization

> Examples so far have leaned towards easily visualized differences
> But variations in reward functions, goals, and dynamics are also studied [13]

o Especially reward function changes in classic gym envs [14]
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The Spectrum of RL Generalization

Completely Shared Structure With Minor Variations in
Distinct Tasks Varied Elements Dynamics

—
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The Spectrum of RL Generalization

Completely Shared Structure With Minor Variations in
Distinct Tasks Varied Elements Dynamics
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Meta-World

Meta-World provides a suite of table-top manipulation tasks with the same robot
arm
— (same state and action space)

The range of tasks is formalized by the task distribution p(7"), where each task T
is defined by its:

e reward function R+ (s, a)

e [nitial state s,

e Goalg
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Meta-World

The set of 50 distinct manipulation tasks creates non-parametric variation
button press door open drawer close drawer open p%g insert
side

pick place push reach window open window close

_—
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Meta-World

Meta-World creates parametric variation by sampling from a distribution over
initial states (ps(sy)) and goals (p+(g))

pick place pick place pick place pick place

Goal Location 1 Goal Location 2  Goal Location 3 Goal Location N
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Meta-World

> First step is to show every task is solvable individually

@)

Requires dense (hand-engineered) reward
function

Reward scale varies by task so we compare
based on binary “success” metric

> Single-Task SAC and PPO

(@)

(@)

Train on parametric variation with goal provided

Can succeed on at least 50% of goals per task

m Slightly inconsistent vocab here
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Single Task Success Rates

door-close-v2 -
sweep-into-v2 -
button-press-wall-v2
button-press-topdown-v2 =
push-back-v2 -
plate-slide-v2
coffee-button-v2 -
handle-press-v2
window-open-v2 -
reach-wall-v2 -
drawer-close-v2
peg-insert-side-v2 -
dial-turn-v2
handle-press-side-v2 -
button-press-v2 -
plate-slide-back-side-v2 -
reach-v2 -
plate-slide-side-v2
coffee-push-v2
door-unlock-v2
plate-slide-back-v2 -
soccer-v2 -
basketball-v2
door-open-v2 -
drawer-open-v2 -
button-press-topdown-wall-v2
sweep-v2 -
push-wall-v2
window-close-v2 =
handle-pull-side-v2
hand-insert-v2 -
pick-place-v2 =
door-lock-v2 -
stick-push-v2
handle-pull-v2 -
push-v2 -
peg-unplug-side-v2
coffee-pull-v2 -
lever-pull-v2
faucet-close-v2 -
stick-pull-v2 o
pick-out-of-hole-v2
shelf-place-v2
faucet-open-v2
hammer-v2
box-close-v2 -
bin-picking-v2 =
assembly-v2
disassemble-v2 -
pick-place-wall-v2

PPO
SAC

0.0

T T T T T
0.2 0.4 0.6 0.8 1.0

Success Rate




Multi-Task vs. Meta-Learning

Multi-Task Learning: tell the policy which task we are solving
> one-hot encoding of non-parametric task ID

> array of parametric goal information

> connections to goal-conditioned RL [15]
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Multi-Task vs. Meta-Learning

Meta-Learning: the policy needs to discover which task we are solving

Two main categories of approaches:

1.  Optimization-based methods quickly finetune on the current task with gradient

updates
a. MAML [16] and its many variants

2. Context-based methods infer the current task by remembering all the past
attempts
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Context-Based Meta-Learning

Informally: figure out the task by looking at everything we've tried and all the
rewards we've received

- See what worked and what didn’t and avoid past mistakes

Full task trajectory (ignoring episode resets) up until time t:

T.t = (So; Ao, 7o, do; S1,Q1, 71, dl! ey St—1,Ag—1,Tt—1s dt—l» St)

Learn a trajectory-conditioned policy to maximize multi-episode return

n(a|s) - m(alr,)
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Context-Based Meta-Learning

> Simplest and earliest implementations are RL*2 [17] and L2RL [18]

o On-policy policy gradient RNNSs that roll through episode boundaries

> More complex variants include PEARL [19] and variBAD [20]
o Better ways to drive exploration and model how uncertain we are of the current task

o For more formal reading: check out connections between Meta-Learning and CMDPs /
BAMDPs [21][22]

> |In general, there is less activity here than gradient-based MAML variants
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MT-10 Maximum Per-Task Success Rates (N=10)

MT-SAC

Meta-World Benchmarks: “] i

MT-TRPO
window-close-v2 -
| |
M u Itl - I aS k window-open-v2 -

door-open-v2 -

Multi-Task (MT): MT1, MT10, MT50 peg-insert:side-v2 1
drawer-open-v2 -

Use standard RL algorithms to train Plck-place-v2 -
reach-v2 -

policies that can see the one-hot task ID

button-press-topdown-v2 -
and goal array
push-v2 -

drawer-close-v2

Tasks are sampled from 1 manipulation £ = e e o =

task (MT1), or 10 (MT10), etc. Success Rate
Methods MTI10  MT50

Multi-task PPO 30.5% 35.4%
Multi-task TRPO 31.3% 21.0%
Task embeddings 20.9% 11.8%

Multi-task SAC 68.3% 38.5%
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Meta-World Benchmarks:
Meta-Learning

Meta-Learning (ML): ML1, ML10, ML45

Use meta-RL algorithms to train policies that

cannot see the one-hot task ID or goal array

Tasks are sampled from 1 manipulation task
(ML1), or 10 (ML10), or 45 (ML45)

5 manipulation tasks are held-out as “test”
tasks

— Measures non-parametric generalization
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Train Environment

Test Environment

Average -
peg-insert-side-v2 -
reach-v2 o
door-open-v2 -
basketball-v2 -
window-open-v2 -
pick-place-v2 -
button-press-topdown-v2 -
push-v2
drawer-close-v2 -
sweep-v2 -
Average -
door-close-v2
shelf-place-v2

drawer-open-v2 -

sweep-into-v2

ML-10 Maximum Per-Task Success Rates (N=10)

RL2-PPO
MAML-TRPO
PEARL

lever-pull-v2 -
0 20 40 60 80 100
Success Rate
ML10 MLA45

Methods meta-train meta-test meta-train meta-test
MAML 44.4% 31.6% 40.7% 39.9%

RL2 86.9% 35.8% 70 % 33.3%
PEARL 23.2% 13% 14.5% 22%
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Results Discussion & Takeaways

e Single-Task RL is still brittle

o Unconvincing PPO/SAC results ' ML10 ML45
o Finding one stable set of hyperparameters with - Methods  peta-train meta-test ~ meta-train  meta-test
reasonable compute remains hard MAML 44.4% 31.6% 40.7% 39.9%
RL? 86.9% 35.8% 70% 33.3%
PEARL 23.2% 13% 14.5% 22%
e Multi-Task RL is still difficult to get working
o Algorithms are unstable enough that positive transfer T MTI10  MTS50
is difficult empirically Multi-task PPO 30.5%  35.4%
o  Overlap with Goal-Conditioned RL gives us more ’;ﬁ‘;}ﬁ;‘;ﬁ,‘;dﬂ‘-‘jg ek e

tools for improvement Multi-task SAC ~ 68.3%  38.5%

e Meta-RL can extend beyond toy gym tasks
o Revival of RL"2
o Are 45 tasks enough to expect non-parametric

generalization?
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Future Work and Open Problems

e Scaling beyond 50 tasks will probably require sparse reward functions
e Realistic observation spaces (images vs. sensor states)
e Meta-Learning relies heavily on automatic resets

An example of image-based multi-task learning with image
observations and a reset trick [23]:
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